9,050 research outputs found

    New Examples of Systems of the Kowalevski Type

    Full text link
    A new examples of integrable dynamical systems are constructed. An integration procedure leading to genus two theta-functions is presented. It is based on a recent notion of discriminantly separable polynomials. They have appeared in a recent reconsideration of the celebrated Kowalevski top, and their role here is analogue to the situation with the classical Kowalevski integration procedure.Comment: 17 page

    Decoherence of a particle in a ring

    Full text link
    We consider a particle coupled to a dissipative environment and derive a perturbative formula for the dephasing rate based on the purity of the reduced probability matrix. We apply this formula to the problem of a particle on a ring, that interacts with a dirty metal environment. At low but finite temperatures we find a dephasing rate T3/2\propto T^{3/2}, and identify dephasing lengths for large and for small rings. These findings shed light on recent Monte Carlo data regarding the effective mass of the particle. At zero temperature we find that spatial fluctuations suppress the possibility of having a power law decay of coherence.Comment: 5 pages, 1 figure, proofed version to be published in EP

    Nonequilibrium phenomena in multiple normal-superconducting tunnel heterostructures

    Full text link
    Using the nonequilibrium theory of superconductivity with the tunnel Hamiltonian, we consider a mesoscopic NISINISIN heterostructure, i.e., a structure consisting of five intermittent normal-metal (N) and superconducting (S) regions separated by insulating tunnel barriers (I). Applying the bias voltage between the outer normal electrodes one can drive the central N island very far from equilibrium. Depending on the resistance ratio of outer and inner tunnel junctions, one can realize either effective electron cooling in the central N island or create highly nonequilibrium energy distributions of electrons in both S and N islands. These distributions exhibit multiple peaks at a distance of integer multiples of the superconducting chemical potential. In the latter case the superconducting gap in the S islands is strongly suppressed as compared to its equilibrium value

    Dephasing Times in a Non-degenerate Two-Dimensional Electron Gas

    Full text link
    Studies of weak localization by scattering from vapor atoms for electrons on a liquid helium surface are reported. There are three contributions to the dephasing time. Dephasing by the motion of vapor atoms perpendicular to the surface is studied by varying the holding field to change the characteristic width of the electron layer at the surface. A change in vapor density alters the quasi-elastic scattering length and the dephasing due to the motion of atoms both perpendicular and parallel to the surface. Dephasing due to the electron-electron interaction is dependent on the electron density.Comment: 4 pages, Revte

    Practice of using the magnetic treatment devices to intensify the processes of primary oil treating

    Get PDF
    During the primary treatment of oil, gas and water, complications arise associated with the presence of hard water-oil emulsions, which cause an increase in fluid pressure in the gathering systems, pipeline damage, as well as difficulties in gas separation and preliminary water discharge at the preliminary discharge unit (PRU). Additional problems arise during transportation of highly paraffinic oils associated with the crystallization of paraffin in the flow path of the oilfield equipment and on the inner surface of pipes, leading to a drop in the productivity of pipelines.  Article discusses the technology of magnetic-reagent treatment of water-oil media, which allows intensifying the processes of primary oil treatment at the facilities of its production. Bench and pilot tests have shown the ability of the magnetic field to accelerate oil demulsification processes, increasing the percentage of separated water during subsequent settling, and to reduce asphalt-resin-paraffin deposits (ARPD) on the inner surface of oil and gas field equipment. Mechanism of the magnetic field effect on water-oil media is described. Effect of treatment on the integrity of the armour shells of oil-water emulsions was studied. Various modes of magnetic treatment have been investigated with evaluation of its effectiveness. It is shown that the best effect is achieved with the combined use of reagents and a magnetic field. Synergistic effect is observed, which consists in increasing their effectiveness. This made it possible to conclude that this method can be applied to reduce the consumption of reagents used in oil production while maintaining the treatment efficiency

    Parity-Affected Superconductivity in Ultrasmall Metallic Grains

    Full text link
    We investigate the breakdown of BCS superconductivity in {\em ultra}\/small metallic grains as a function of particle size (characterized by the mean spacing dd between discrete electronic eigenstates), and the parity (PP = even/odd) of the number of electrons on the island. Assuming equally spaced levels, we solve the parity-dependent BCS gap equation for the order parameter ΔP(d,T)\Delta_P (d,T). Both the T=0T=0 critical level spacing dc,Pd_{c,P} and the critical temperature Tc,P(d)T_{c,P} (d) at which ΔP=0\Delta_P = 0 are parity dependent, and both are so much smaller in the odd than the even case that these differences should be measurable in current experiments.Comment: 4 pages RevTeX, 1 encapsulated postscript figure, submitted to Physical Review Letter
    corecore